University of Glasgow

A toolbox for sustainable metal recycling

Sustainable energy uses metallic and semiconductor structures distributed in organic and inorganic phases

Classical routes use hydro- and pyrometallurgical routes to achieve complete digestion

$-$
We can design more efficient recycling processes by targeting weaknesses in specific phases

Metal	Generally reactive	Ductile
Inorganic	Generally Unreactive	Brittle
Organic	Generally unreactive	Ductile

Printed circuit board

Composite magnets/ active fabric

Laminate film

Photovoltaic device

The toolkit has developed selective redox catalysts for metal digestion

Hydrogenation techniques for magnet fragmentation

Novel debondable adhesives for designed disassembly
Environmentally compatible etchants to target base metals Ultrasonic enhanced etchants to avoid passivation

Selective dissolution with redox catalysts

Recycling photovoltaic devices with brines

1 cm
High intensity ultra-sonication for thermoelectric device recycling

Electropurification of metals

Lithium ion batteries recycling/regeneration

Highlights

Novel solvent systems allow acid-free, selective dissolution of metals

Combining physical (ultrasounds) and chemical (selective oxidation) leads to fast and highly efficient processes

Successfully applied to Li-ion batteries, PCBs, thermoelectric materials, solar cells, magnets

Specific waste need specific process: polymer dissolution/removal, valorisation of low-value materials, hydrogen processing of magnets

- Processes informed by LCA, TEA, design for recycle and process automation

Contact us:

Ms Carol-lynne Pettit: C.Pettit@exeter.ac.uk
Mr. Samuel King: s.p.king@bham.ac.uk
Prof. Andrew Abbott: apa1@leicester.ac.uk
Dr. Chris Elgar: cee17@leicester.ac.uk
Dr. Guillaume Zante: gz45@leicester.ac.uk

Learn more:

